Regulated nuclear polyadenylation of Xenopus albumin pre-mRNA.

نویسندگان

  • M N Rao
  • E Chernokalskaya
  • D R Schoenberg
چکیده

Cytoplasmic regulation of the length of poly(A) on mRNA is a well-characterized process involved in translational control during development. In contrast, there is no direct in vivo evidence for regulation of the length of poly(A) added during nuclear pre-mRNA processing in somatic cells. We previously reported that Xenopus serum albumin [Schoenberg et al. (1989) Mol. Endocrinol. 3, 805-815] and transferrin [Pastori et al. (1992) J. Steroid Biochem. Mol. Biol. 42, 649-657], mRNA have exceptionally short poly(A) tails ranging from 12 to 17 residues, whereas vitellogenin mRNA has long poly(A). An RT-PCR protocol was adapted to determine the length of poly(A) added onto pre-mRNA, defined here as that species bearing the terminal intron. Using this assay we show that vitellogenin pre-mRNA has the same long poly(A) tail as mature vitellogenin mRNA. In contrast, albumin pre-mRNA has the same short poly(A) as found on fully-processed albumin mRNA. These results indicate that the short poly(A) tail on albumin mRNA results from regulation of poly(A) addition during nuclear 3' processing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symplekin, a constitutive protein of karyo- and cytoplasmic particles involved in mRNA biogenesis in Xenopus laevis oocytes.

Symplekin is a dual location protein that has been localized to the cytoplasmic plaques of tight junctions but also occurs in the form of interchromatin particles in the karyoplasm. Here we report the identification of two novel and major symplekin-containing protein complexes in both the karyo- and the cytoplasm of Xenopus laevis oocytes. Buffer-extractable fractions from the karyoplasm of sta...

متن کامل

The poly(A)-limiting element is a conserved cis-acting sequence that regulates poly(A) tail length on nuclear pre-mRNAs.

Most vertebrate mRNAs exit the nucleus with a 200+-residue poly(A) tail and are deadenylated to yield heterogeneous polymers of 50-200 adenosine residues on any given mRNA. We previously reported that Xenopus albumin mRNA and pre-mRNA have an unusually short, discrete 17-residue poly(A) tail and showed that regulation of poly(A) length is controlled independently by two cis-acting poly(A)-limit...

متن کامل

Enforcing temporal control of maternal mRNA translation during oocyte cell-cycle progression.

Meiotic cell-cycle progression in progesterone-stimulated Xenopus oocytes requires that the translation of pre-existing maternal mRNAs occur in a strict temporal order. Timing of translation is regulated through elements within the mRNA 3' untranslated region (3' UTR), which respond to cell cycle-dependant signalling. One element that has been previously implicated in the temporal control of mR...

متن کامل

Translational control of nuclear lamin B1 mRNA during oogenesis and early development of Xenopus

Cytoplasmic polyadenylation of specific mRNAs is commonly correlated with their translational activation during development. A canonical nuclear polyadenylation element AAUAAA (NPE) and cytoplasmic polyadenylation element(s) (CPE) are necessary and sufficient for polyadenylation during egg maturation. We have characterized cis-acting sequences of Xenopus nuclear lamin B1 mRNA that mediate trans...

متن کامل

Drosophila clipper/CPSF 30K is a post-transcriptionally regulated nuclear protein that binds RNA containing GC clusters.

An essential component of the mammalian pre-mRNA 3'-end processing machinery is a multimeric protein complex known as cleavage and polyadenylation specificity factor (CPSF). The Drosophila melanogaster gene, clipper ( clp ), encodes a homolog of the CPSF 30K subunit. We have shown previously that CLP possesses N-terminal endoribonucleolytic activity and that the relative expression of its mRNA ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic acids research

دوره 24 20  شماره 

صفحات  -

تاریخ انتشار 1996